Press Release
First-in-kind Human 3-dimensional Models of Parkinson’s Disease and Progressive Multiple Sclerosis Launching to the International Space Station
Media Contact:
Tia Chancellor
tia@runswitchpr.com
502.457.0740
First-in-kind Human 3-dimensional Models of Parkinson’s Disease and Progressive Multiple Sclerosis Launching to the International Space Station
First patient-derived, induced pluripotent stem cell disease-specific organoid models in microgravity to advance understanding of neurodegenerative disease
LOUISVILLE, Ky. (December 2, 2019) – The National Stem Cell Foundation (NSCF) announced today that research teams from Aspen Neuroscience and the New York Stem Cell Foundation (NYSCF) Research Institute will send a first-in-kind study of neurodegenerative disease to the International Space Station (ISS) on the nineteenth SpaceX Commercial Resupply Services (CRS-19) mission, scheduled to launch December 4th from the Kennedy Space Center in Cape Canaveral, Florida. This is the second space flight for the research teams. A preliminary experiment was launched to the ISS in July 2019 onboard SpaceX CRS-18 to test custom flight hardware systems and refine post-flight analytical methods in preparation for the SpaceX CRS-19 launch.
The NSCF-funded collaboration between researchers at the NYSCF Research Institute and Aspen Neuroscience will perform the first study of long-term cell cultures of patient-derived induced pluripotent stem cell (iPSC) neural organoids with microglia on the ISS to study Parkinson’s disease and primary progressive multiple sclerosis in microgravity. The ability to observe cell interaction, cell signaling, migration, changes in gene expression and the common pathways of neuroinflammation for both diseases in microgravity provides an opportunity to view the biological processes in a way that is not possible on Earth. This innovative approach to modelling disease has the potential to provide valuable new insight into the fundamental mechanisms underlying neurodegenerative disorders that may accelerate biomarker discovery and potential new drug and cell therapy options for patients. These models also offer potential for better translational study and future personalized medicine applications.
The development of patient-specific, 3-dimensional human organoids that incorporate microglia (the inflammatory cells of the immune system implicated in the development of Parkinson’s, MS and other neurodegenerative diseases) for observation and study in the unique research environment of microgravity has the potential to enable progress across the field for a wide variety of conditions that affect a significant portion of the global population. The engineering required to facilitate the transport of cells and culture on orbit is being led by space flight engineering partner Space Tango.